White mars by Brian W. Aldiss & Roger Penrose. Chapter 10, 11

We went into the hall, followed by the android. The audience gave us a round of applause. I introduced Thorgeson by saying that he would explain why there were so many scientists on Mars, and that he would speak of the problems they were hoping to solve. He would touch on matters affecting us all. His artificial friend, I said, would assist him.

Tom sat in the front row and nodded approval of my short speech – the first I had made before such a large gathering.

Thorgeson began nervously, clearing his throat and gesticulating too much.

‘As our understanding of the basic units of the universe deepens, it becomes yet clearer that these units are entities that possess no mass. There is a profound mystery here. Ordinary matter obviously possesses mass, and so do the basic particles of which matter is composed – protons, neutrons, and electrons, and also their constituent quarks and kliks. For many decades, physicists have struggled with the question: where does mass come from?

‘This is a serious issue. Without mass everything would disintegrate. We’d be instantly dispersed into a flash of ethereal substance – not even mist – spreading outwards with the speed of light. Not a brilliant way to get to the nearest star.’

The feeble joke earned chuckles enough from the audience for Thorgeson to relax a little.

Euclid spoke. ‘So tell us, what is the purpose of the Mars Omega Smudge Project?’

Glancing at a prepared script, Thorgeson continued, ‘The Omega Smudge is what has brought us here. To explain why we call this vital smudge a smudge I should remind you of some history of particle physics last century and earlier this century.

‘Euclid, do you remember the names given to the six varieties of basic subnuclear entity which was postulated last century?’

Euclid: ‘Down, Up, Strange, Charm, Bottom, Top.’

‘He has a faultless memory,’ Thorgeson said, as another chuckle ran through the listeners.

He continued for a while, describing highlights of twentieth-century particle physics, which I was able to follow mainly because of Kathi’s earlier explanations.

He was saying,’… the superconducting supercollider or SSC that was planned to be built under Texas was a miracle that did not quite happen. It would have cost billions and was designed to discover what was referred to as “the Higgs particle”. I see that some of you DOPs remember the name, though, of course, not the excitement of the time.

‘Here’s an artist’s impression of the proposed SSC entrance.’ He showed a vidslide in 3D of an airy and imposing glass structure, topped by a geodesic dome.

Euclid: ‘Why would anyone think that so much money should be spent in search of a single particle?’

‘It’s a good question, Euclid. In the end the US Congress dropped the project. But the physicists – why, they argued that finding the elusive “Higgs” would have supplied them with the answer to the question of what comprises the basic units of the universe.’

Euclid: ‘Did they believe that in those days?’

‘Well, maybe not quite. But they did regard the finding of the Higgs as vitally important in their scheme of things. Also, completing the SSC would have achieved other targets. They put all their eggs in one basket to get the collider funded. The argument became over-heated. Certain physicists assigned an almost religious quality to the Higgs, referring to it as “the God particle” – a good journalistic phrase…’

Euclid: ‘Did they believe that in those days?’

Thorgeson looked nonplussed. ‘No Euclid, that’s where you say, “Why was the Higgs regarded as so important?”‘

Amid sympathetic laughter, Euclid spoke. ‘Why was the Higgs regarded as so important?’

At his ease now, Thorgeson said, ‘I’m glad you asked me that, Euclid. It all has to do with the question of mass. You are aware that most particles of nature have mass, but the photon and graviton – the basic quanta of electromagnetism and gravitation respectively – are exceptions. Those quanta of which matter is mainly composed, the protons and neutrons or their constituent quarks, are massive particles. So also are the kliks and pseudo-kliks that compose the much less massive leptons, such as electrons and muons.’

Pages: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Leave a Reply 0

Your email address will not be published. Required fields are marked *