X

A Brief History of Time by Stephen Hawking

Figure 6:1

According to the theory of relativity, nothing can travel faster than light. Thus if light cannot escape, neither can anything else; everything is dragged back by the gravitational field. So one has a set of events, a region of space-time, from which it is not possible to escape to reach a distant observer. This region is what we now call a black hole. Its boundary is called the event horizon and it coincides with the paths of light rays that just fail to escape from the black hole.

In order to understand what you would see if you were watching a star collapse to form a black hole, one has to remember that in the theory of relativity there is no absolute time. Each observer has his own measure of time. The time for someone on a star will be different from that for someone at a distance, because of the gravitational field of the star. Suppose an intrepid astronaut on the surface of the collapsing star, collapsing inward with it, sent a signal every second, according to his watch, to his spaceship orbiting about the star. At some time on his watch, say 11:00, the star would shrink below the critical radius at which the gravitational field becomes so strong nothing can escape, and his signals would no longer reach the spaceship. As 11:00 approached his companions watching from the spaceship would find the intervals between successive signals from the astronaut getting longer and longer, but this effect would be very small before 10:59:59. They would have to wait only very slightly more than a second between the astronaut’s 10:59:58 signal and the one that he sent when his watch read 10:59:59, but they would have to wait forever for the 11:00 signal. The light waves emitted from the surface of the star between 10:59:59 and 11:00, by the astronaut’s watch, would be spread out over an infinite period of time, as seen from the spaceship. The time interval between the arrival of successive waves at the spaceship would get longer and longer, so the light from the star would appear redder and redder and fainter and fainter. Eventually, the star would be so dim that it could no longer be seen from the spaceship: all that would be left would be a black hole in space. The star would, however, continue to exert the same gravitational force on the spaceship, which would continue to orbit the black hole. This scenario is not entirely realistic, however, because of the following problem. Gravity gets weaker the farther you are from the star, so the gravitational force on our intrepid astronaut’s feet would always be greater than the force on his head. This difference in the forces would stretch our astronaut out like spaghetti or tear him apart before the star had contracted to the critical radius at which the event horizon formed! However, we believe that there are much larger objects in the universe, like the central regions of galaxies, that can also undergo gravitational collapse to produce black holes; an astronaut on one of these would not be torn apart before the black hole formed. He would not, in fact, feel anything special as he reached the critical radius, and could pass the point of no return without noticing it However, within just a few hours, as the region continued to collapse, the difference in the gravitational forces on his head and his feet would become so strong that again it would tear him apart.

The work that Roger Penrose and I did between 1965 and 1970 showed that, according to general relativity, there must be a singularity of infinite density and space-time curvature within a black hole. This is rather like the big bang at the beginning of time, only it would be an end of time for the collapsing body and the astronaut. At this singularity the laws of science and our ability to predict the future would break down. However, any observer who remained outside the black hole would not be affected by this failure of predictability, because neither light nor any other signal could reach him from the singularity. This remarkable fact led Roger Penrose to propose the cosmic censorship hypothesis, which might be paraphrased as “God abhors a naked singularity.” In other words, the singularities produced by gravitational collapse occur only in places, like black holes, where they are decently hidden from outside view by an event horizon. Strictly, this is what is known as the weak cosmic censorship hypothesis: it protects observers who remain outside the black hole from the consequences of the breakdown of predictability that occurs at the singularity, but it does nothing at all for the poor unfortunate astronaut who falls into the hole.

Page: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Categories: Hawking, Stephen
Oleg: