A HISTORY OF SCIENCE

“As to the figure of the earth it must necessarily be spherical…. If it were not so, the eclipses of the moon would not have such sections as they have. For in the configurations in the course of a month the deficient part takes all different shapes; it is straight, and concave, and convex; but in eclipses it always has the line of divisions convex; wherefore, since the moon is eclipsed in consequence of the interposition of the earth, the periphery of the earth must be the cause of this by having a spherical form. And again, from the appearance of the stars it is clear, not only that the earth is round, but that its size is not very large; for when we make a small removal to the south or the north, the circle of the horizon becomes palpably different, so that the stars overhead undergo a great change, and are not the same to those that travel in the north and to the south. For some stars are seen in Egypt or at Cyprus, but are not seen in the countries to the north of these; and the stars that

in the north are visible while they make a complete circuit, there undergo a setting. So that from this it is manifest, not only that the form of the earth is round, but also that it is a part of a not very large sphere; for otherwise the difference would not be so obvious to persons making so small a change of place. Wherefore we may judge that those persons who connect the region in the neighborhood of the pillars of Hercules with that towards India, and who assert that in this way the sea is one, do not assert things very improbable. They confirm this conjecture moreover by the elephants, which are said to be of the same species towards each extreme; as if this circumstance was a consequence of the conjunction of the extremes. The mathematicians who try to calculate the measure of the circumference, make it amount to four hundred thousand stadia; whence we collect that the earth is not only spherical, but is not large compared with the magnitude of the other stars.”

But in giving full meed of praise to Aristotle for the promulgation of this doctrine of the sphericity of the earth, it must unfortunately be added that the conservative philosopher paused without taking one other important step. He could not accept, but, on the contrary, he expressly repudiated, the doctrine of the earth’s motion. We have seen that this idea also was a part of the Pythagorean doctrine, and we shall have occasion to dwell more at length on this point in a succeeding chapter. It has even been contended by some critics that it was the adverse conviction of the Peripatetic philosopher which, more than any other single influence, tended to retard the progress of the true doctrine regarding the mechanism of the heavens.

Aristotle accepted the sphericity of the earth, and that doctrine became a commonplace of scientific knowledge, and so continued throughout classical antiquity. But Aristotle rejected the doctrine of the earth’s motion, and that doctrine, though promulgated actively by a few contemporaries and immediate successors of the Stagirite, was then doomed to sink out of view for more than a thousand years. If it be a correct assumption that the influence of Aristotle was, in a large measure, responsible for this result, then we shall perhaps not be far astray in assuming that the great founder of the Peripatetic school was, on the whole, more instrumental in retarding the progress of astronomical science that any other one man that ever lived.

The field of science in which Aristotle was pre-eminently a pathfinder is zoology. His writings on natural history have largely been preserved, and they constitute by far the most important contribution to the subject that has come down to us from antiquity. They show us that Aristotle had gained possession of the widest range of facts regarding the animal kingdom, and, what is far more important, had attempted to classify these facts. In so doing he became the founder of systematic zoology.

Aristotle’s classification of the animal kingdom was known and studied throughout the Middle Ages, and, in fact, remained in vogue until superseded by that of Cuvier in the nineteenth century. It is not to be supposed that all the terms of Aristotle’s classification originated with him. Some of the divisions are too patent to have escaped the observation of his

Pages: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107

Leave a Reply 0

Your email address will not be published. Required fields are marked *