S t e p h e n W. H a w k i n g. E i n s t e i n s T r a u m

Wenn die zu einem Schwarzen Loch kollabierende Materie eine elektrische Gesamtladung besitzt, wird das resultierende Schwarze Loch die gleiche Ladung aufweisen. Das Schwarze Loch wird also tendenziell diejenigen Partner der virtuellen Teilchen-Antiteilchen-Paare anziehen, die die entgegengesetzte Ladung tragen, und die Partner mit gleicher Ladung abstoßen. Das Schwarze Loch wird deshalb vorzugsweise Teilchen emittieren, deren Ladung das gleiche Vorzeichen hat wie seine eigene, und deshalb rasch seine Ladung verlieren. In ähnlicher Weise wird, wenn die kollabierende Materie einen Gesamtdrehimpuls hat, das resultierende Schwarze Loch rotieren und vorzugsweise Teilchen emittieren, die ihm seinen Drehimpuls entziehen. Das Schwarze Loch «erinnert sich» an die elektrische Ladung, den Drehimpuls und die Masse der kollabierten Materie, während es alles andere «vergißt», weil diese drei Größen mit fernwirken-den Feldern gekoppelt sind: im Falle der Ladung mit dem elektromagnetischen Feld und im Falle des Drehimpulses und der Masse mit dem Gravitationsfeld.

Experimente von Robert H. Dicke von der Princeton University und Wladimir Braginskij von der Moskauer Staatsuniversi-tät deuten darauf hin, daß kein fernwirkendes Feld mit der Quanteneigenschaft verknüpft ist, die als Baryonenzahl bezeichnet wird. (Baryonen sind eine Familie von Teilchen, zu denen das Proton und das Neutron gehören.) Deshalb würde ein Schwarzes Loch, das seine Existenz dem Zusammensturz einer Ansammlung von Baryonen verdankte, seine Baryonenzahl

«vergessen» und gleiche Mengen von Baryonen und Antibaryo-nen abstrahlen. Durch sein Verschwinden würde das Schwarze Loch deshalb gegen eines der heiligsten Gesetze der Teilchenphysik verstoßen, das Gesetz der Baryonenerhaltung.

Obwohl Bekensteins Hypothese, daß Schwarze Löcher eine endliche Entropie haben, nur schlüssig ist, wenn Schwarze Lö-

cher thermische Strahlung abgeben, erscheint es zunächst als reines Wunder, daß aus der eingehenden quantenmechanischen Berechnung der Teilchenentstehung eine Emission mit thermi-schem Spektrum hervorgeht. Des Rätsels Lösung ist, daß die emittierten Teilchen, wenn sie aus dem Schwarzen Loch heraus-tunneln, aus einer Region kommen, von der ein außen befindlicher Beobachter nichts weiß als ihre Masse, ihren Drehimpuls und ihre elektrische Ladung. Alle Kombinationen oder Konfigurationen emittierter Teilchen, die die gleiche Energie, den gleichen Drehimpuls und die gleiche elektrische Ladung haben, sind also gleich wahrscheinlich. Tatsächlich könnte das Schwarze Loch einen Fernsehapparat oder Prousts Werke in zehn Leder-bänden emittieren, doch die Zahl der Teilchenkonfigurationen, die diesen exotischen Möglichkeiten entspricht, ist verschwin-dend klein. Die bei weitem größte Zahl von Konfigurationen entspricht einer Emission mit einem Spektrum, das fast thermisch ist.

Die Emission aus Schwarzen Löchern hat einen zusätzlichen Grad von Ungewißheit oder Unvorhersagbarkeit, über den hin-

aus, der normalerweise mit der Quantenmechanik verknüpft ist.

In der klassischen Mechanik kann man bei Messungen des Ortes und der Geschwindigkeit beide Ergebnisse vorhersagen. Das Unbestimmtheitsprinzip in der Quantenmechanik besagt, daß nur über eine dieser Messungen eine Aussage gemacht werden kann.

Der Beobachter kann entweder das den Ort oder das die Zeit betreffende Meßergebnis vorhersagen, nicht aber beide. Er muß sich in seiner Vorhersage für die eine oder die andere Kombination von Ort und Geschwindigkeit entscheiden, so daß seine Fä-

higkeit zu definitiven Vorhersagen praktisch halbiert ist. Bei Schwarzen Löchern ist die Situation noch schlimmer. Da die von einem Schwarzen Loch emittierten Teilchen aus einer Region stammen, über die der Beobachter nur sehr begrenzte Kenntnisse besitzt, kann er definitiv weder Ort noch Geschwindigkeit eines Teilchens noch irgendeine Kombination der beiden vorhersagen. Alles, was er vorhersagen kann, ist die Wahrscheinlichkeit, daß bestimmte Teilchen emittiert werden. So hat es den Anschein, als habe Einstein sich gleich doppelt geirrt, als er sagte: «Der liebe Gott würfelt nicht.» Die Teilchenemission aus Schwarzen Löchern scheint den Schluß nahezulegen, daß Gott nicht nur manchmal würfelt, sondern die Würfel auch gelegentlich an einen Ort wirft, wo man sie nicht sehen kann.

Schwarze Löcher

und Baby-Universen

Der Sturz in ein Schwarzes Loch ist zu einem beliebten Horrorszenario der Science-fiction geworden. Tatsächlich gehören Schwarze Löcher heute in den Bereich der wissenschaftlichen Fakten und nicht mehr nur in die Welt der Zukunftsromane. Wie ich noch ausführen werde, gibt es gute Gründe für die Annahme, daß Schwarze Löcher existieren.

Die Beobachtungsdaten deuten nachdrücklich auf das Vorkommen zahlreicher Schwarzer Löcher in unserer eigenen Galaxis und einer noch größeren Zahl in anderen Galaxien hin.

Natürlich interessieren sich die Science-fiction-Autoren vor allem für das, was beim Sturz in ein Schwarzes Loch geschieht.

Sehr beliebt ist die Annahme, daß man bei einem rotierenden Schwarzen Loch durch eine kleine Öffnung in der Raumzeit fallen und in einer anderen Region der Raumzeit landen könnte.

Pages: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61

Leave a Reply 0

Your email address will not be published. Required fields are marked *