The Andromeda Strain by Crichton, Michael

1. Millipore(R) Filters, insertion into ventilatory system. Initial spec filters unilayer styrilene, with maximal efficiency of 97.4% trapping. Replaced in 1966 when Upjohn developed filters capable of trapping organisms of size up to one micron. Trapping at 90% efficiency per leaf, causing triple-layered membrance to give results of 99.9%. Infective ratio of .1% remainder too low to be harmful. Cost factor of four or five-layered membrance removing all but .001% considered prohibitive for added gain. Tolerance parameter of 1/1,000 considered sufficient. Installation completed 8/12/66.

2. Atomic Self-Destruct Device, change in detonator close-gap timers. See AEC/Def file 77-12-0918.

3. Atomic Self-Destruct Device, revision of core maintenance schedules for K technicians, see AEC/Warburg file 77-14-0004.

4. Atomic Self-Destruct Device, final command decision change. See AEC/Def file 77-14-0023. SUMMARY APPENDED.

SUMMARY OF ODD MAN HYPOTHESIS: First tested as null hypothesis by Wildfire advisory committee. Grew out of tests conducted by USAF (NORAD) to determine reliability of commanders in making life/death decisions. Tests involved decisions in ten scenario contexts, with prestructured alternatives drawn up by Walter Reed Psychiatric Division, after n-order test analysis by biostatistics unit, NIH, Bethesda.

Test given to SAC pilots and groundcrews, NORAD workers, and others involved in decision-making or positive-action capacity. Ten scenarios drawn up by Hudson Institute; subjects required– to make YES/NO decision in each case. Decisions always involved thermonuclear or chem-biol destruction of enemy targets.

Data on 7420 subjects tested by H,H, program for multifactorial analysis of variance; later test by ANOVAR program; final discrimination by CLASSIF program. NIH biostat summarizes this program as follows:

It is the object of this program to determine the effectiveness of assigning individuals to distinct groups on the basis of scores which can be quantified. The program produces group contours and probability of classification for individuals as a control of data.

Program prints: mean scores for groups, contour confidence limits, and scores of individual test subjects.

K.G. Borgrand, Ph.D. NIH

RESULTS OF ODD MAN STUDY: The study concluded that married individuals performed differently from single individuals on several parameters of the test. Hudson Institute provided mean answers, i.e. theoretical “right” decisions, made by computer on basis of data given in scenario. Conformance of study groups to these right answers produced an index of effectiveness, a measure of the extent to which correct decisions were made.

Group: Index of Effectiveness

Married males: .343

Married females: .399

Single females: .402

Single males: .824

The data indicate that married men choose the correct decision only once in three times, while single men choose correctly four out of five times. The group of single males was then broken down further, in search of highly accurate subgroups within that classification. Results of special testing confirm the Odd Man Hypothesis, that an unmarried male should carry out command decisions involving thermonuclear or chem-biol destruct contexts.

Single males, total: .824

Military:

commissioned officer: .655

noncommissioned officer: .624

Technical:

engineers: .877

ground crews: .901

Service:

maintenance and utility: .758

Professional:

Scientists: .946

These results concerning the relative skill of decision-making individuals should not be interpreted hastily. Although it would appear that janitors are better decision makers than generals, the situation is in reality more complex. PRINTED SCORES ARE SUMMATIONS OF TEST AND INDIVIDUAL VARIATIONS. DATA MUST BE INTERPRETED WITH THIS IN MIND. Failure to do so may lead to totally erroneous and dangerous assumptions.

Application of study to Wildfire command personnel conducted at request of AEC at time of implantation of self-destruct nuclear capacity. Test given to all Wildfire personnel; results filed under CLASSIF WILDFIRE: GENERAL PERSONNEL (see ref. 77-14-0023). Special testing for command group.

Name: Index of Effectiveness

Burton: .543

Leavitt: .601

Kirke: .614

Stone: .687

Hall: .899

Results of special testing confirm the Odd Man Hypothesis, that an unmarried male should carry out command decisions involving thermonuclear or chem-biol destruct contexts.

When Hall had finished reading, he said, “It’s crazy.”

“Nonetheless,” Stone said, “it was the only way we could get the government to put control of the weapon in our hands.

“You really expect me to put in my key, and fire that thing?”

“I’m afraid you don’t understand,” Stone said. “The detonation mechanism is automatic. Should breakthrough of the organism occur, with contamination of all Level V, detonation will take place within three minutes unless you lock in your key, and call it off.”

“Oh,” Hall said, in a quiet voice.

11. Decontamination

A BELL RANG SOMEWHERE ON THE LEVEL; STONE glanced up at the wall clock. It was late. He began the formal briefing, talking rapidly, pacing up and down the room, hands moving constantly.

“As you know,” he said, “we are on the top level of a five-story underground structure. According to protocol it will take us nearly twenty-four hours to descend through the sterilization and decontamination procedures to the lowest level. Therefore we must begin immediately. The capsule is already on its way.”

He pressed a button on a console at the head of the table, and a television screen glowed to life, showing the coneshaped satellite in a plastic bag, making its descent. It was being cradled by mechanical hands.

“The central core of this circular building,” Stone said, “contains elevators and service units– plumbing, wiring, that sort of thing. That is where you see the capsule now. It will be deposited shortly in a maximum-sterilization assembly on the lowest level.”

He went on to explain that he had brought back two other surprises from Piedmont. The screen shifted to show Peter Jackson, lying on a litter, with intravenous lines running into both arms.

“This man apparently survived the night. He was the one walking around when the planes flew over, and he was still alive this morning.”

“What’s his status now?”

“Uncertain,” Stone said. “He is unconscious, and he was vomiting blood earlier today. We’ve started intravenous dextrose to keep him fed and hydrated until we can get down to the bottom.”

Stone flicked a button and the screen showed the baby. It was howling, strapped down to a tiny bed. An intravenous bottle was running into a vein in the scalp.

“This little fellow also survived last night,” Stone said. “So we brought him along. We couldn’t really leave him, since a Directive 7-12 was being called. The town is now destroyed by a nuclear blast. Besides, he and Jackson are living clues which may help us unravel this mess.”

Then, for the benefit of Hall and Leavitt, the two men disclosed what they had seen and learned at Piedmont. They reviewed the findings of rapid death, the bizarre suicides, the clotted arteries and the lack of bleeding.

Hall listened in astonishment. Leavitt sat shaking his head.

When they were through, Stone said, “Questions?”

“None that won’t keep,” Leavitt said.

“Then let’s get started,” Stone said.

***

They began at a door, which said in plain white letters: TO LEVEL II It was an innocuous, straightforward, almost mundane sign. Hall had expected something more– perhaps a stern guard with a machine gun, or a sentry to check passes. But there was nothing, and he noticed that no one had badges, or clearance cards of any kind.

He mentioned this to Stone. “Yes,” Stone said. “We decided against badges early on. They are easily contaminated and difficult to sterilize; usually they are plastic and high-heat sterilization melts them.”

The four men passed through the door, which clanged shut heavily and sealed with a hissing sound. It was airtight. Hall faced a tiled room, empty except for a hamper marked I ‘clothing.” He unzipped his jumpsuit and dropped it into the hamper; there was a brief flash of light as it was incinerated.

Then, looking back, he saw that on the door through which he had come was a sign: “Return to Level I is NOT Possible Through this Access.”

He shrugged. The other men were already moving through the second door, marked simply EXIT. He followed them and stepped into clouds of steam. The odor was peculiar, a faint woodsy smell that he guessed was scented disinfectant. He sat down on a bench and relaxed, allowing the steam to envelop him. It was easy enough to understand the purpose of the steam room: the heat opened the pores, and the steam would be inhaled into the lungs.

The four men waited, saying little, until their bodies were coated with a sheen of moisture, and then walked into the next room.

Leavitt said to Hall, “What do you think of this?”

“It’s like a goddam Roman bath,” Hall said.

The next room contained a shallow tub (“Immerse Feet ONLY”) and a shower. (“Do not swallow shower solution. Avoid undue exposure to eyes and mucous membranes.”) It was all very intimidating. He tried to guess what the solutions were by smell, but failed; the shower was slippery, though, which meant it was alkaline. He asked Leavitt about this, and Leavitt said the solution was alpha chlorophin at pH 7.7. Leavitt said that whenever possible, acidic and alkaline solutions were alternated.

“When you think about it,” Leavitt said, “we’ve faced up to quite a planning problem here. How to disinfect the human body– one of the dirtiest things in the known universe– without killing the person at the same time. Interesting.

He wandered off. Dripping wet from the shower, Hall looked around for a towel but found none. He entered the next room and blowers turned on from the ceiling in a rush of hot air. From the sides of the room, UV lights clicked on, bathing the room in an intense purple light. He stood there until a buzzer sounded, and the dryers turned off. His skin tingled slightly as he entered the last room, which contained clothing. They were not jumpsuits, but rather like surgical uniforms– light-yellow, a loose-fitting top with a V-neck and short sleeves; elastic banded pants; low rubber-soled shoes, quite comfortable, like ballet slippers.

The cloth was soft, some kind of synthetic. He dressed and stepped with the others through a door marked EXIT TO LEVEL II. He entered the elevator and waited as it descended.

Hall emerged to find himself in a corridor. The was here were painted yellow, not red as they had been on Level I. The people wore yellow uniforms. A nurse by the elevator said, “The time is 2:47 p.m., gentlemen. You may continue your descent in one hour.”

They went to a small room marked INTERIM CONFINEMENT. It contained a half-dozen couches with plastic disposable covers over them.

Stone said, “Better relax. Sleep if you can. We’ll need all the rest we can get before Level V. ” He walked over to Hall. “How did you find the decontamination procedure?”

“Interesting,” Hall said. “You could sell it to the Swedes and make a fortune. But somehow I expected something more rigorous.”

“Just wait,” Stone said. “It gets tougher as you go. Physicals on Levels III and IV. Afterward there will be a brief conference.”

Then Stone lay down on one of the couches and fell instantly asleep. It was a trick he had learned years before, when he had been conducting experiments around the clock. He learned to squeeze in an hour here, two hours there. He found it useful.

***

The second decontamination procedure was similar to the first. Hall’s yellow clothing, though he had worn it just an hour, was incinerated.

“Isn’t that rather wasteful?” he asked Burton.

Burton shrugged. “It’s paper.”

“Paper? That cloth?”

Burton shook his head. “Not cloth. Paper. New process.”

They stepped into the first total-immersion pool. Instructions on the wall told Hall to keep his eyes open under water. Total immersion, he soon discovered, was guaranteed by the simple device of making the connection between the first room and the second an underwater passage. Swimming through, he felt a slight burning of his eyes, but nothing bad.

The second room contained a row of six boxes, glass-walled, looking rather like telephone booths. Hall approached one and saw a sign that said, “Enter and close both eyes. Hold arms slightly away from body and stand with feet one foot apart. Do not open eyes until buzzer sounds. BLINDNESS MAY RESULT FROM EXPOSURE TO LONG-WAVE RADIATION.”

He followed the directions and felt a kind of cold heat on his body. It lasted perhaps five minutes, and then he heard the buzzer and opened his eyes. His body was dry. He followed the others to a corridor, consisting of four showers. Walking down the corridor, he passed beneath each shower in turn. At the end, he found blowers, which dried him, and then clothing. This time the clothing was white.

They dressed, and took the elevator down to Level III.

***

There were four nurses waiting for them; one took Hall to an examining room. It turned out to be a two-hour physical examination, given not by a machine but by a blank-faced, thorough young man. Hall was annoyed, and thought to himself that he preferred the machine.

The doctor did everything, including a complete history birth, education, travel, family history, past hospitalizations and illnesses. And an equally complete physical. Hall became angry; it was all so damned unnecessary. But the doctor shrugged and kept saying, “It’s routine.”

After two hours, he rejoined the others, and proceeded to Level IV.

***

Four total-immersion baths, three sequences of ultraviolet and infrared light, two of ultrasonic vibrations, and then something quite astonishing at the end. A steel-walled cubicle, with a helmet on a peg. The sign said, “This is an ultraflash apparatus. To protect head and facial hair, place metal helmet securely on head, then press button below.”

Hall had never heard of ultraflash, and he followed directions, not knowing what to expect. He placed the helmet over his head, then pressed the button.

There was a single, brief, dazzling burst of white light, followed by a wave of heat that filled the cubicle. He felt a moment of pain, so swift he hardly recognized it until it was over. Cautiously, he removed the helmet and looked at his body. His skin was covered with a fine, white ash– and then he realized that the ash was his skin, or had been: the machine had burned away the outer epithelial layers. He proceeded to a shower and washed the ash off. When he finally reached the dressing room, he found green uniforms.

***

Another physical. This time they wanted samples of everything: sputum, oral epithelium, blood, urine, stool. He submitted passively to the tests, examinations, questions. He was tired, and was beginning to feel disoriented. The repetitions, the new experiences, the colors on the walls, the same bland artificial light…

Finally, he was brought back to Stone and the others. Stone said, “We have six hours on this level– that’s protocol, waiting while they do the lab tests on us– so we might as well sleep. Down the corridor are rooms, marked with your names. Further down is the cafeteria. We’ll meet there in five hours for a conference. Right?”

Hall found his room, marked with a plastic door tag. He entered, surprised to find it quite large. He had been expecting something the size of a Pullman cubicle, but this was bigger and better-furnished. There was a bed, a chair, a small desk, and a computer console with built-in TV set. He was curious about the computer, but also very tired. He lay down on the bed and fell asleep quickly.

***

Burton could not sleep. He lay in his bed on Level IV and stared at the ceiling, thinking. He could not get the image of that town out of his mind, or those bodies, lying in the street without bleeding…

Burton was not a hematologist, but his work had involved some blood studies. He knew that a variety of bacteria had effects on blood. His own research with staphylococcus, for example, had shown that this organism produced two enzymes that altered blood.

One was the so-called exotoxin, which destroyed skin and dissolved red cells. Another was a coagulase, which coated the bacteria with protein to inhibit destruction by white cells.

So it was possible that bacteria could alter blood. And it could do it many different ways: strep produced an enzyme, streptokinase, that dissolved coagulated plasma. Clostridia and pneumococci produced a variety of hemolysins that destroyed red cells. Malaria and amebae also destroyed red cells, by digesting them as food. Other parasites did the same thing.

So it was possible.

But it didn’t help them in finding out how the Scoop organism worked.

Burton tried to recall the sequence for blood clotting. He remembered that it operated like a kind of waterfall: one enzyme was set off, and activated, which acted on a second enzyme, which acted on a third; the third on a fourth; and so on, down through twelve or thirteen steps, until finally blood clotted.

And vaguely he remembered the rest, the details: all the intermediate steps, the necessary enzymes, the metals, ions, local factors. It was horribly complex.

He shook his head and tried to sleep.

***

Leavitt, the clinical microbiologist, was thinking through the steps in isolation and identification of the causative organism. He had been over it before; he was one of die original founders of the group, one of the men who developed the Life Analysis Protocol. But now, on the verge of putting that plan into effect, he had doubts.

Two years before, sitting around after lunch, talking speculatively, it had all seemed wonderful. It had been an amusing intellectual game then, a kind of abstract test of wits. But now, faced with a real agent that caused real and bizarre death, he wondered whether all their plans would prove to be so effective and so complete as they once thought.

Pages: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Leave a Reply 0

Your email address will not be published. Required fields are marked *