A Brief History of Time by Stephen Hawking

Although Friedmann found only one, there are in fact three different kinds of models that obey Friedmann’s two fundamental assumptions. In the first kind (which Friedmann found) the universe is expanding sufficiently slowly that the gravitational attraction between the different galaxies causes the expansion to slow down and eventually to stop. The galaxies then start to move toward each other and the universe contracts.

Figure 3:2

Figure 3:2 shows how the distance between two neighboring galaxies changes as time increases. It starts at zero, increases to a maximum, and then decreases to zero again. In the second kind of solution, the universe is expanding so rapidly that the gravitational attraction can never stop it, though it does slow it down a bit.

Figure 3:3

Figure 3:3 Shows the Separation between neighboring galaxies in this model. It starts at zero and eventually the galaxies are moving apart at a steady speed. Finally, there is a third kind of solution, in which the universe is expanding only just fast enough to avoid recollapse.

Figure 3:4

In this case the separation, shown in Figure 3:4, also starts at zero and increases forever. However, the speed at which the galaxies are moving apart gets smaller and smaller, although it never quite reaches zero.

A remarkable feature of the first kind of Friedmann model is that in it the universe is not infinite in space, but neither does space have any boundary. Gravity is so strong that space is bent round onto itself, making it rather like the surface of the earth. If one keeps traveling in a certain direction on the surface of the earth, one never comes up against an impassable barrier or falls over the edge, but eventually comes back to where one started.

In the first kind of Friedmann model, space is just like this, but with three dimensions instead of two for the earth’s surface. The fourth dimension, time, is also finite in extent, but it is like a line with two ends or boundaries, a beginning and an end. We shall see later that when one combines general relativity with the uncertainty principle of quantum mechanics, it is possible for both space and time to be finite without any edges or boundaries.

The idea that one could go right round the universe and end up where one started makes good science fiction, but it doesn’t have much practical significance, because it can be shown that the universe would recollapse to zero size before one could get round. You would need to travel faster than light in order to end up where you started before the universe came to an end – and that is not allowed!

In the first kind of Friedmann model, which expands and recollapses, space is bent in on itself, like the surface of the earth. It is therefore finite in extent. In the second kind of model, which expands forever, space is bent the other way, like the surface of a saddle. So in this case space is infinite. Finally, in the third kind of Friedmann model, with just the critical rate of expansion, space is flat (and therefore is also infinite).

But which Friedmann model describes our universe? Will the universe eventually stop expanding and start contracting, or will it expand forever? To answer this question we need to know the present rate of expansion of the universe and its present average density. If the density is less than a certain critical value, determined by the rate of expansion, the gravitational attraction will be too weak to halt the expansion. If the density is greater than the critical value, gravity will stop the expansion at some time in the future and cause the universe to recollapse.

We can determine the present rate of expansion by measuring the velocities at which other galaxies are moving away from us, using the Doppler effect. This can be done very accurately. However, the distances to the galaxies are not very well known because we can only measure them indirectly. So all we know is that the universe is expanding by between 5 percent and 10 percent every thousand million years. However, our uncertainty about the present average density of the universe is even greater. If we add up the masses of all the stars that we can see in our galaxy and other galaxies, the total is less than one hundredth of the amount required to halt the expansion of the universe, even for the lowest estimate of the rate of expansion. Our galaxy and other galaxies, however, must contain a large amount of “dark matter” that we cannot see directly, but which we know must be there because of the influence of its gravitational attraction on the orbits of stars in the galaxies. Moreover, most galaxies are found in clusters, and we can similarly infer the presence of yet more dark matter in between the galaxies in these clusters by its effect on the motion of the galaxies. When we add up all this dark matter, we still get only about one tenth of the amount required to halt the expansion. However, we cannot exclude the possibility that there might be some other form of matter, distributed almost uniformly throughout the universe, that we have not yet detected and that might still raise the average density of the universe up to the critical value needed to halt the expansion. The present evidence therefore suggests that the universe will probably expand forever, but all we can really be sure of is that even if the universe is going to recollapse, it won’t do so for at least another ten thousand million years, since it has already been expanding for at least that long. This should not unduly worry us: by that time, unless we have colonized beyond the Solar System, mankind will long since have died out, extinguished along with our sun!

Pages: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Leave a Reply 0

Your email address will not be published. Required fields are marked *