Strange Horizons, Nov ’02

KMH: Do you have any long-range goals you’d like to share?

JVP: Mostly I hope to be able to write and sell. There is a novel publication in my future, but I don’t see myself making my living doing it. My dream, when I’m feeling dreamlike, is to have Hollywood dump a crate of money on me for the film rights of one of my stories. Then I can retire to writer’s heaven.

KMH: What about a more personal, or individual goal?

JVP: When I was in grad school at U.C. Davis, I had an instructor tell me he thought my work was too genre-influenced to be published in literary magazines and too literary to make it in the genre markets. All I can conclude from his advice is that the academy doesn’t know much about the genre marketplace or genre readers. I’m constantly pushing myself to be a better writer. Somewhere out there are my ultimate stories. I haven’t written them yet because I haven’t lived long enough to discover what they are. I haven’t developed my skills enough to tell them, but I will, and it’ll be fun getting to that point.

KMH: Why?

JVP: Because science fiction is a thrill ride.

*

K. Mark Hoover is a writer living and working in Mississippi. He is also the contest administrator for the Moonlight & Magnolia Fiction Writing Contest. He has published about a dozen short stories and articles in professional and semi-professional magazines; his story “Slugball” appeared in Strange Horizons. He has a wife and three children.

Visit James Van Pelt’s Web site. He welcomes comments about his work or conversation about the writerly arts.

Music of the Ellipses

Our understanding of the solar system took some unplanned detours

By Brian Tung

11/12/01

Mankind is not a circle with a single center

but an ellipse with two focal points

of which facts are one

and ideas are the other.

—Victor Hugo, Les Misérables

A semi-recent survey* showed that about a quarter of American adults believe that the Sun goes around the Earth. You can imagine the uproar that arose in educational institutions around the country. (Actually, it was pretty subdued, and if you were of a cynical bent, you could draw some pretty depressing conclusions about what higher education thinks of the American mandatory educational system. But let’s not get into that.) How is it possible that so many Americans could believe such a thing?

[Footnote *: The 2000 Science and Engineering Indicators, published by the National Science Foundation, if you’re curious.]

Well, they believe it for the same reason that the ancient Greeks and everyone else up to about the 16th century believed it. All you have to do is look up, and if you have the common sense God granted the garden snail, it is plain to see that the Sun goes around the Earth. After all, astronomers claim the Moon goes around the Earth, and no one laughs at them for that.

Granted, appearances were not all that mattered to the Greeks. They had their theories, too. Aristotelian physics held that the Earth was all that was base and ignoble, and it therefore sank to the very center of the universe. The celestial objects, however—everything up in the sky—were good and noble, and therefore light and airy, and they all travelled in great circular arcs around the lowly center, maintaining a cordial distance at all times.

However, the Greeks were no dummies. If it had been clear from observation that it was the Earth that went about the Sun, and not the other way around, they would have adapted that into their theories. It wasn’t their fault that appearances were so deceiving that they arrived at the wrong conclusions. They made a perfectly reasonable stab at the truth.

So let’s take a look at how that reasonable stab at the truth became unreasonable fiction.

Anyone who pays attention to the night sky for any significant period of time soon notices that it moves with surprising regularity. For the most part, stars rise in the east and set in the west, like the Sun, and those that don’t, move in perfectly reasonable circles around the north pole star, Polaris.

There are a couple of thousand stars visible to the unaided eye on any given night, so it becomes something of a hassle to have to keep track of them individually. To simplify things, people picked up the trick of grouping them into constellations. Instead of having to remember a couple of thousand stars, they only needed to memorize a few dozen constellations. If you observe the constellations over the period of a year or two, you also notice that the same constellations don’t rise at the same time every night, but neither do they appear willy-nilly, wherever and whenever they want. There is a set order to them, and they follow that order, year in and year out. In other words, although the stars arc across the sky each night, they don’t move with respect to one another. It’s as though they were stuck onto a huge black dome, and the dome moved around the Earth as a whole. In fact, astronomers from ancient times have occasionally called the stars the fixed stars.

In contrast to these law-abiding points of light in the heavens, there are a few bodies that do not follow these simple rules. These bodies also rise and set once a day, to be sure, but they do not move as though they were stuck onto the dome of the sky. Rather, they move with respect to the stars, and they can be seen wandering from constellation to constellation over a period of weeks and months (and in the case of the Moon, from day to day). The Greeks called these bodies planetes, from their word for “wander,” and that’s where we get our word “planet.” To the Greeks, anything that wandered from place to place was a planet, so the list of planets, in toto, read as follows:

Sun

Moon

Mercury

Venus

Mars

Jupiter

Saturn

The Sun and Moon are, of course, no longer thought of as planets. The orbits of Mercury and Venus are closer to the Sun than Earth’s orbit—although the ancient Greeks didn’t know that—and therefore never appear very far from it. In fact, much of the time, both planets are too close to the Sun to be seen without safety precautions. The rest of the time they are either west of the Sun, and therefore only appear in the morning, before sunrise, or east of the Sun, and therefore only appear in the evening, after sunset.

The Greeks, in fact, had two different names for Venus. They called its morning apparition, or appearance, Phosphoros (Greek for “light-bringer,” which the Romans transformed into Lucifer), and its evening apparition Hesperos (Greek for “west,” which the Romans transformed into Vesper). It took the Greek philosopher and mathematician Pythagoras (c. 560-480 B.C.) to realize these were one and the same planet, although he may have gotten the idea from the Babylonians.

If we concentrate our attention on the planets Mars, Jupiter, and Saturn, we notice that not only do they not stay in place with respect to the well-behaved stars, but they don’t even follow nice, circular paths across the sky. If we plot their positions against the stars, we find instead that their paths are uneven. Generally, they move west to east, but sometimes they move east to west, and, occasionally, they make a wide loop, up and over, as if they couldn’t decide which way they wanted to go. When a planet moves in the “wrong” direction, it’s called retrograde motion (as opposed to prograde, which is motion in the “right” direction).

This troubled the Pythagoreans. They felt that the circle was the acme of perfection as far as shapes were concerned, and since the planets were just as much celestial objects as the stars, they should all be moving in circles. However, for all that they were absorbed in the world of the ideals, the Pythagoreans couldn’t go against appearances that much. Certainly one could not describe the motion of Mars, say, with just one circle. A follower of Pythagoras, the Greek philosopher Plato (c. 427-347 B.C.), spent a good deal of time on reconciling planetary motions to circles, without much success. So he posed the following open question: Could one describe it with a combination of circles?

The first really explicit attempt at answering Plato’s question in the affirmative was made by the Greek philosopher, astronomer, and mathematician Eudoxus of Cnidus (c. 400-347 B.C.). His solution used spheres, which were all right by the Pythagoreans, since a sphere is nothing more than the perfection of the circle raised to the third dimension. Eudoxus proposed that the weird loop-the-loop motion of Mars could be explained if it were on the equator of a rotating sphere. But not a freely rotating sphere. No, Eudoxus added a second sphere, set at an angle to the first, and to which the first sphere was attached.

Pages: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Leave a Reply 0

Your email address will not be published. Required fields are marked *