At the beginning of the work on the stellar code, the initial assumptions had to be kept to a minimum, but one could not do without them altogether. If they proved false, the work would of necessity be in vain. One such assumption was that the code was binary. This agreed, by and large, with the recorded signal, but our own system of notation also contributed to this formalization. Not satisfied with the signal on the tapes, and physicists examined at length the neutrino emission itself, which was the “original” (the recording being only an image). They decided finally that the code could be considered binary “to a reasonable approximation.” There was, in this pronouncement — inescapably — a Q.E.D. peremptoriness. The next problem was to determine to which category of signal the letter belonged.
To the best of our knowledge the letter could be “written” in some declarative-transactional language like our own, operating with units of meaning; or it could be a system of “modeling” signals, such as television; or it could represent a “recipe,” that is, a set of instructions necessary for the production of a certain object. The letter, finally, could contain a description of an object — of a particular “thing” — in a code that was “acultural,” one that referred only to certain constants in the world of nature, discoverable by physics and mathematical in form. The discreteness of these four categories of possible code is not total. A television image results from the projection of three-dimensional phenomena onto a plane, with a time distribution that conforms to the physiological mechanisms of the human eye and brain. What we see on the screen is not visible to organisms that are otherwise quite advanced on the evolutionary scale. A dog, for example, will not recognize on television (or in a photograph) another dog. In addition, the boundary between the “thing” and the “recipe for the thing” is not sharp. An egg cell is both a thing, as a material object, and the production recipe for the organism that will develop from it. Thus the relation that exists between the carrier of information and the information itself can be multivalent and tangled.
Knowing, then, the flimsiness of our classification schema, but having at our disposal none better, we proceeded to the task of eliminating, one by one, its variants. The easiest to test, relatively, was the “television hypothesis.” For a while it enjoyed great success and was considered to be the most economical. In various combinations, then, the signal was fed into a picture tube. Not a hint of an image was obtained that represented anything; on the other hand, the result was not “complete chaos.” On the white screen appeared black spots that increased, grew, flowed together, and vanished, and the whole gave the effect of “boiling.” When the signal was run through a thousand times slower, the scene resembled colonies of bacteria in stages of expansion, mutual absorption, and collapse. The eye caught a certain rhythm and regularity in the process, though the rhythm and regularity said nothing.
Control experiments were also initiated, in which recordings of natural neutrino noise were fed into the television. What resulted was a formlessness without centers of condensation, a fluttering and flickering that dissolved into a uniform gray. It was possible to argue, of course, that the Senders had a different sort of television from ours — not optical, for example, but olfactory, or olfactory-tactile. Yet even if they were made differently from us, there could be no doubt that they were our superiors in knowledge, and therefore they would have had to realize that the chance of reception ought not to be made dependent on the addressee’s physiological similarity to the sender.
The second variant-possibility was thus rejected. Testing the first was doomed to failure, because, as I pointed out, without a dictionary and a grammar it is impossible to crack a truly “foreign” language. So the two others remained. They were treated together, because (again, as I have said) the distinction between “thing” and “process” is relative. To make a very long story short — the Project began from precisely this position, achieved some results, “materializing” a small piece of the “letter” (i.e., successfully translating, as it were, a fragment of it); but then the work came to a standstill.
The task given me was to find out whether the assumption of the letter as a “thing-process” was correct. I could not refer to the results that had been obtained by beginning with the assumption, for that would have constituted a logical error (a vicious circle). It was not out of ill will, then, but precisely to keep me from approaching the problem with preconceptions that at the beginning no achievements were mentioned in my presence. They might have been, in a certain sense, the product of “misunderstandings.”
I did not even know if the mathematicians of the Project had already made a stab at the task given me. I assumed that they had. If I knew their failure — I thought — then I could save myself some unnecessary trouble; but Dill, Rappaport, and Baloyne felt that the safest thing was to tell me nothing.
In a word, I was summoned to rescue the honor of the planet. I had to flex my mathematical muscles in earnest — a little nervous, but pleased. The explaining, the conversing, the sacramental entrusting of the recording from the stars took half a day. The “Big Four” escorted me then to the hotel, watching one another to make sure that no one, in my presence, would betray anything that for the time being I was not supposed to know.
6
From the moment I landed on the roof, through all the meetings and conversations, the feeling never left me that I was playing a scientist in a grade-B movie. The feeling was strengthened by the room — or, rather, suite — in which they put me. I cannot remember ever having at my disposal so many unnecessary things. In the study stood a desk of presidential proportions; opposite it, two television sets and a radio. The armchair had controls for being raised, turned around, and lowered, no doubt so that between bouts of mental struggling one could take a little nap on it. Near it there was a large shape beneath a white cover. At first I took this for some piece of gymnastic equipment or a rocking horse (even that would not have surprised me), but it was a brand-new, very handsome IBM cryotronic calculator, which indeed proved useful to me. Wanting to join man more closely to the machine, the engineers at IBM had him work it also with his feet. Every time I pressed the “clear” pedal I expected, by reflex, to drive into the wall — the pedal was so much like a car accelerator. In the wall cabinet behind the desk I found a dictaphone, a typewriter, and also a small, scrupulously furnished bar.
But the most peculiar thing was the reference library. Whoever had assembled it must have been absolutely convinced that the more a book cost, the more valuable it was. Thus there were encyclopedias, thick volumes on the history of mathematics and the history of science — even one on Mayan cosmogony. Perfect order reigned among the backs and bindings; and complete nonsense in the printed contents. During that whole year I did not use my library once.
The bedroom was also done up nicely. In it I found an electric heating pad, a medicine chest, and a small hearing aid. To this day I do not know whether this was a joke or a mistake. Taken together, everything expressed the careful execution of the order: “Top quarters for a top mathematician.” Glancing at the night table, I saw a Bible and was reassured — yes, they truly had my welfare at heart.
The tome that contained the stellar code, delivered over to me with great ceremony, was not especially interesting — at least not at first reading. The beginning went: “0001101010001111100110111111001010010100.” The rest was more of the same. The only additional information given me said that the code unit definitely was made up of nine elementary signs (zeros and ones).
Taking possession of this new abode, I put on my thinking cap. I reasoned more or less as follows: Civilization is a thing both necessary and accidental; like the lining of a nest, it is a shelter from the world, a tiny counterworld that the large world silently tolerates, with the toleration of indifference, because in it there is no answer to the questions of good and evil, beauty and ugliness, laws and customs. Language, the creation of civilization, is like the framework of the nest; it binds all the bits of lining and unites them into the shape that is deemed necessary by the occupants of the nest. Language is an appeal to the joint identity of the nesting beings, their common denominator, their constant of similarity, and therefore its influence must end immediately beyond the edge of that subtle structure.