The Genesis Machine by James P. Hogan

“You will appreciate therefore, gentlemen, that the surveillance and weapons-guidance capabilities of this machine are in no way limited to the number of events that one human brain can keep track of at any one time. The machine can make most of its decisions for itself, using generalized criteria that I give it. If you like, its functions include the duties of a whole regiment of staff officers.”

Clifford then proceeded to conjure up a series of images of places and events taking place all over Earth, which included several examples of the automated facilities he had described. He finished the session by capturing the image of two U.S. spacecraft carrying out a prearranged docking maneuver while in orbit. While this was being shown on the main display, an adjacent screen provided a conventional view of the same sequence, which was picked up by a TV camera aboard one of the craft and transmitted down through the normal channels. The difference was that the conventional picture required a camera to be up there, on the scene of the event; the J-scope didn’t.

Then it was Morelli’s turn to speak again.

“So much for how we can guide the weapon. Now let us see exactly what the weapon itself can do.

“Hi-radiation gives rise to a secondary effect—conventional radiant energy that exists as a halo around every object you can name. For most objects this secondary radiation is so tiny that it exists more as a mathematical abstraction than anything you could hope to measure . . . but it’s there.” The faces were by now tense and expectant as the moment of seeing in action the weapon they had heard about for so long drew nearer.

Morelli continued. “In the J-reactor, we in effect amplify enormously what takes place in ordinary matter. The process causes secondary energy to materialize as a halo, which is most intense in the immediate vicinity of the reactor but extends outward . . . getting thinner all the time . . . throughout all of space. Now, the important thing to bear in mind is this. . . .” He paused for a moment to add emphasis. “Although the secondary energy is denser around the reactor, the amount of it is only a small fraction of the total—”

“I’m not quite with you there, Professor,” one of the listeners came in. “Could you clarify that please?”

“Think of it as heat,” Morelli suggested. “A red-hot needle is at a high temperature, but doesn’t hold much heat. The water in the boilers of a power station is not as hot, but it contains a far larger amount of heat. Using that analogy, the energy in the vicinity of the reactor is more intense . . . ‘hotter,’ but when you add up all the ‘colder’ energy that’s distributed all through billions of cubic light-years of space, you find that the amount is greater. In other words, forget the ‘temperature’; most of the energy—most by far—that the reactor produces is spread out thinly across space . . . when you add it all up. Is that clearer?”

“Thank you, yes.”

“Fine.” Morelli took a long breath. “The situation I’ve just described applies when the reactor is running with the focusing system switched off. By bringing the focusing system in, we can force all of that energy to materialize not all through space, but concentrated inside one tiny volume. One way of visualizing it is to imagine the mass consumed in the reactor as being converted into its energy equivalent and instantly appearing elsewhere. The effect is the same as that of a hydrogen bomb that suddenly appears out of nowhere. A big difference is that the mass conversion can be a lot higher than in an H-bomb, so we can produce effects far more devastating . . . not that there’d be a lot of point in that.”

Morelli turned and gazed expectantly up at the main display. Scores of pairs of eyes followed his, tense . . . waiting.

This time the screen showed a normal TV transmission. It was a view from the air, looking down from high altitude on a desolate Arctic waste of snow, bleak rocky shorelines, inlets of sea and ice floes, with a range of broken, jagged mountains visible in the middle distance. An unfamiliar voice came over the loudspeaker.

Pages: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

Leave a Reply 0

Your email address will not be published. Required fields are marked *