Grantville Gazette-Volume 1. Eric Flint

Sulfa Drugs

The very first antibiotic was called Sulfanilamide, a member of a family of drugs called sulfa drugs. You may have seen it in a World War II movie, where a medic sprinkles a white powder over a wound. The ability of sulfa drugs to stop infections and allow people to heal was miraculous for its time. It was discovered by accident, when people found that a red fabric dye stopped infections. This took a while to figure out, because the dye itself didn’t stop disease in the lab, but rather broke down in the body to make the antibiotic.

Sulfanilamide is fairly toxic, and there is not a lot of difference between a dose that has little effect and one that makes a person sick. It’s not an ideal drug, but still one which in many ways deserves the term “miraculous.”

Once scientists figured out what the drug was, and how to produce it, they tried a variety of chemical variations to see what might work better or be less toxic. They found a couple of dozen varieties, with differing ability to stop different diseases with more or less toxic effects.

Today, sulfanilamide is not used anymore as a medicine, but it is often made as an exercise in sophomore organic chemistry lab. It is the easiest antibiotic to synthesize. Sulfa drugs are less effective than penicillin and other drugs commonly used today. That’s because they do not actually kill bacteria, but rather stop them from growing, requiring the immune system to do the killing. They are also limited in what they work against: they have no affect on typhus, syphilis, or smallpox, and only some effect on plague. But they are fairly effective on wounds and skin infections.

Chloramphenicol

Chloramphenicol was originally grown from microorganisms, as were penicillin, tetracycline, streptomycin, and the other half dozen or so antibiotics available in the 1940s and 1950s. Once the structure of the drug was determined, a method of making it from chemicals proved cheaper than growing it. This gave it a large competitive edge over the others in terms of price. In the context of the 1632 series and the resources available to the characters, it is the only powerful antibiotic that can be synthesized. Its chemical formula is even listed in Encyclopedia Britannica, as well as the Physician’s Desk Reference, or PDR.

In some ways chloramphenicol is ideal, in that it can treat a wide variety of infections. Unfortunately, it has a couple of disadvantages as well, which is why most people today have never heard of it:

First, it is often not properly processed by newborns, leading to something called “Gray Baby Syndrome.” Fortunately, this syndrome usually reverses itself when the newborn is taken off the drug. But, obviously, it limits chloramphenicol’s effectiveness for very young children.

Secondly, and more damning, is the fact that in about 1 in 25,000 people, it causes aplastic anemia. This is a disorder in which some blood cells are no longer produced, resulting, about two weeks later, in the patient suffering a very unpleasant death.

As documented in the book Adverse Reactions, this was allegedly discovered shortly after its introduction, and yet the manufacturer, Parke-Davis, continued an aggressive marketing campaign. It was over a decade before Congressional committee hearings and lawsuits revealed the very real dangers to the public and stopped the deaths of many patients. Because of the danger, chloramphenicol is no longer used today in the United States or other wealthy industrialized nations. But it is still a drug of choice in Africa, where its cost effectiveness overrides the occasional fatal side effects.

In the context of the 1632 series, however, chloramphenicol is an ideal drug. The drug can effectively treat typhus and syphilis, which sulfa drugs cannot. It is far more effective at treating plague and most other bacterial infections than sulfa drugs. And when the death rate from the drug—1 in 25,000, or .004%—is compared to a 33% fatality rate for typhus, and a higher one for plague and syphilis, it is easy to see the advantages. If someone has one of these diseases, chloramphenicol is the only treatment available, and is arguably the most valuable man-made product in the 1632 context. Obviously—as was already touched on in the novel 1633—there will be many issues needing to be dealt with regarding fairness and the cost of the drug. But that’s true of the availability of up-time medicine in general.

Pages: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131

Leave a Reply 0

Your email address will not be published. Required fields are marked *