Solaris by Stanislaw Lem(1961)

Concealed at first beneath the ocean surface, a large flattened disc appears, ragged, with a tar-like coating. After a few hours, it begins to separate into flat sheets which rise slowly. The observer now becomes a spectator at what looks like a fight to the death, as massed ranks of waves converge from all directions like contorted, fleshy mouths which snap greedily around the tattered, fluttering leaf, then plunge into the depths. As each ring of waves breaks and sinks, the fall of this mass of hundreds of thousands of tons is accompanied for an instant by a viscous rumbling, an immense thunderclap. The tarry leaf is overwhelmed, battered and torn apart; with every fresh assault, circular fragments scatter and drift like feebly fluttering wings below the ocean surface. They bunch into pear-shaped clusters or long strings, merge and rise again, and drag with them an undertow of coagulated shreds of the base of the primal disc. The encircling waves continue to break around the steadily expanding crater. This phenomenon may persist for a day or linger on for a month, and sometimes there are no further developments. The conscientious Giese dubbed this first variation a ‘stillbirth,’ convinced that each of these upheavals aspired towards an ultimate condition, the ‘major mimoid,’ like a polyp colony (only covering an area greater than a town) of pale outcroppings with the faculty of imitating foreign bodies. Uyvens, on the other hand, saw this final stage as constituting a degeneration or necrosis: according to him, the appearance of the ‘copies’ corresponded to a localized dissipation of the life energies of the ocean, which was no longer in control of the original forms it created.

Giese would not abandon his account of the various phases of the process as a sustained progression towards perfection, with a conviction which is particularly surprising coming from a man of such a moderate, cautious turn of mind in advancing the most trivial hypothesis on the other creations of the ocean. Normally he had all the boldness of an ant crawling up a glacier.

Viewed from above, the mimoid resembles a town, an illusion produced by our compulsion to superimpose analogies with what we know. When the sky is clear, a shimmering heat-haze covers the pliant structures of the clustered polyps surmounted by membranous palisades. The first cloud passing overhead wakens the mimoid. All the outcrops suddenly sprout new shoots, then the mass of polyps ejects a thick tegument which dilates, puffs out, changes color and in the space of a few minutes has produced an astonishing imitation of the volutes of a cloud. The enormous ‘object’ casts a reddish shadow over the mimoid, whose peaks ripple and bend together, always in the opposite direction to the movement of the real cloud. I imagine that Giese would have been ready to give his right hand to discover what made the mimoids behave in this way, but these ‘isolated’ productions are nothing in comparison to the frantic activity the mimoid displays when ‘stimulated’ by objects of human origin.

The reproduction process embraces every object inside a radius of eight or nine miles. Usually the facsimile is an enlargement of the original, whose forms are sometimes only roughly copied. The reproduction of machines, in particular, elicits simplifications that might be considered grotesque – practically caricatures. The copy is always modelled in the same colorless tegument, which hovers above the outcrops, linked to its base by flimsy umbilical cords; it slides, creeps, curls back on itself, shrinks or swells and finally assumes the most complicated forms. An aircraft, a net or a pole are all reproduced at the same speed. The mimoid is not stimulated by human beings themselves, and in fact it does not react to any living matter, and has never copied, for example, the plants imported for experimental purposes. On the other hand, it will readily reproduce a puppet or a doll, a carving of a dog, or a tree sculpted in any material.

The observer must bear in mind that the ‘obedience’ of the mimoid does not constitute evidence of cooperation, since it is not consistent. The most highly evolved mimoid has its off-days, when it ‘lives’ in slow-motion, or its pulsation weakens. (This pulsation is invisible to the naked eye, and was only discovered after close examination of rapid-motion film of the mimoid, which revealed that each ‘beat’ took two hours.)

During these ‘off-days,’ it is easy to explore the mimoid, especially if it is old, for the base anchored in the ocean, like the protuberances growing out of it, is relatively solid, and provides a firm footing for a man. It is equally possible to remain inside the mimoid during periods of activity, except that visibility is close to nil because of the whitish colloidal dust continually emitted through tears in the tegument above. In any case, at close range it is impossible to distinguish what forms the tegument is assuming, on account of their vast size – the smallest ‘copy’ is the size of a mountain. In addition, a thick layer of colloidal snow quickly covers the base of the mimoid: this spongy carpet takes several hours to solidify (the ‘frozen’ crust will take the weight of a man, though its composition is much lighter than pumice stone). The problem is that without special equipment there is a risk of being lost in the maze of tangled structures and crevasses, sometimes reminiscent of jumbled colonnades, sometimes of petrified geysers. Even in daylight it is easy to lose one’s direction, for the sun’s rays cannot pierce the white ceiling ejected into the atmosphere by the ‘imitative explosions.’

On gala days (for the scientist as well as for the mimoid), an unforgettable spectacle develops as the mimoid goes into hyperproduction and performs wild flights of fancy. It plays variations on the theme of a given object and embroiders ‘formal extensions’ that amuse it for hours on end, to the delight of the non-figurative artist and the despair of the scientist, who is at a loss to grasp any common theme in the performance. The mimoid can produce ‘primitive’ simplifications, but is just as likely to indulge in ‘baroque’ deviations, paroxysms of extravagant brilliance. Old mimoids tend to manufacture extremely comic forms. Looking at the photographs, I have never been moved to laughter; the riddle they set is too disquieting to be funny.

During the early years of exploration, the scientists literally threw themselves upon the mimoids, which were spoken of as open windows on the ocean and the best opportunity to establish the hoped-for contact between the two civilizations. They were soon forced to admit that there was not the slightest prospect of communication, and that the entire process began and ended with the reproduction of forms. The mimoids were a dead end.

Giving way to the temptations of a latent anthropomorphism or zoomorphism, there were many schools of thought which saw various other oceanic formations as ‘sensory organs,’ even as ‘limbs,’ which was how experts like Maartens and Ekkonai classified Giese’s ‘vertebrids’ and ‘agilus’ for a time. Anyone who is rash enough to see protuberances that reach as far as two miles into the atmosphere as limbs, might just as well claim that earthquakes are the gymnastics of the Earth’s crust!

Three hundred chapters of Giese catalogue the standard formations which occur on the surface of the living ocean and which can be seen in dozens, even hundreds, in the course of any day. The symmetriads – to continue using the terminology and definitions of the Giese school – are the least ‘human’ formations, which is to say that they bear no resemblance whatsoever to anything on Earth. By the time, the symmetriads were being investigated, it was already clear that the ocean was not aggressive, and that its plasmatic eddies would not swallow any but the most foolhardy explorer (of course I am not including accidents resulting from mechanical failures). It is possible to fly in complete safety from one part to another of the cylindrical body of an extensor, or of the vertebrids, Jacob’s ladders oscillating among the clouds: the plasma retreats at the speed of sound in the planet’s atmosphere to make way for any foreign body. Deep funnels will open even beneath the surface of the ocean (at a prodigious expenditure of energy, calculated by Scriabin at around 10^19 ergs). Nevertheless the first venture into the interior of a symmetriad was undertaken with the utmost caution and discipline, and involved a host of what turned out to be unnecessary safety measures. Every schoolboy on Earth knows of these pioneers.

It is not their nightmare appearance that makes the gigantic symmetriad formations dangerous, but the total instability and capriciousness of their structure, in which even the laws of physics do not hold. The theory that the living ocean is endowed with intelligence has found its firmest adherents among those scientists who have ventured into their unpredictable depths.

The birth of a symmetriad comes like a sudden eruption. About an hour beforehand, an area of tens of square miles of ocean vitrifies and begins to shine. It remains fluid, and there is no alteration in the rhythm of the waves. Occasionally the phenomenon of vitrification occurs in the neighbourhood of the funnel left by an agilus. The gleaming sheath of the ocean heaves upwards to form a vast ball that reflects sky, sun, clouds and the entire horizon in a medley of changing, variegated images. Diffracted light creates a kaleidoscopic play of color.

Pages: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44

Leave a Reply 0

Your email address will not be published. Required fields are marked *