Cosmos by Carl Sagan

On many a clear night, if you look patiently up at the sky, you will see a solitary meteor blazing briefly overhead. On some nights you can see a shower of meteors, always on the same few days of every year – a natural fireworks display, an entertainment in the heavens. These meteors are made by tiny grains, smaller than a mustard seed. They are less shooting stars than falling fluff. Momentarily brilliant as they enter the Earth’s atmosphere, they are heated and destroyed by friction at a height of about 100 kilometers. Meteors are the remnants of comets.* Old comets, heated by repeated passages near the Sun, break up, evaporate and disintegrate. The debris spreads to fill the full cometary orbit. Where that orbit intersects the orbit of the Earth, there is a swarm of meteors waiting for us. Some part of the swarm is always at the same position in the Earth’s orbit, so the meteor shower is always observed on the same day of every year. June 30, 1908 was the day of the Beta Taurid meteor shower, connected with the orbit of Comet Encke. The Tunguska Event seems to have been caused by a chunk of Comet Encke, a piece substantially larger than the tiny fragments that cause those glittering, harmless meteor showers.

* That meteors and meteorites are connected with the comets was first proposed by Alexander von Humboldt in his broad-gauge popularization of all of science, published in the years 1845 to 1862, a work called Kosmos. It was reading Humboldt’s earlier work that fired the young Charles Darwin to embark on a career combining geographical exploration and natural history. Shortly thereafter he accepted a position as naturalist aboard the ship HMS Beagle, the event that led to The Origin of Species.

Comets have always evoked fear and awe and superstition. Their occasional apparitions disturbingly challenged the notion of an unalterable and divinely ordered Cosmos. It seemed inconceivable that a spectacular streak of milk-white flame, rising and setting with the stars night after night, was not there for a reason, did not hold some portent for human affairs. So the idea arose that comets were harbingers of disaster, auguries of divine wrath – that they foretold the deaths of princes, the fall of kingdoms. The Babylonians thought that comets were celestial beards. The Greeks thought of flowing hair, the Arabs of flaming swords. In Ptolemy’s time comets were elaborately classified as ‘beams,’ ‘trumpets,’ ‘jars’ and so on, according to their shapes. Ptolemy thought that comets bring wars, hot weather and ‘disturbed conditions.’ Some medieval depictions of comets resemble unidentified flying crucifixes. A Lutheran ‘Superintendent’ or Bishop of Magdeburg named Andreas Celichius published in 1578 a ‘Theological Reminder of the New Comet,’ which offered the inspired view that a comet is ‘the thick smoke of human sins, rising every day, every hour, every moment, full of stench and horror before the face of God, and becoming gradually so thick as to form a comet, with curled and plaited tresses, which at last is kindled by the hot and fiery anger of the Supreme Heavenly Judge.’ But others countered that if comets were the smoke of sin, the skies would be continually ablaze with them.

The most ancient record of an apparition of Halley’s (or any other) Comet appears in the Chinese Book of Prince Huai Nan, attendant to the march of King Wu against Zhou of Yin. The year was 1057 B.C. The approach to Earth of Halley’s Comet in the year 66 is the probable explanation of the account by Josephus of a sword that hung over Jerusalem for a whole year. In 1066 the Normans witnessed another return of Halley’s Comet. Since it must, they thought, presage the fall of some kingdom, the comet encouraged, in some sense precipitated, the invasion of England by William the Conqueror. The comet was duly noted in a newspaper of the time, the Bayeux Tapestry. In 1301, Giotto, one of the founders of modern realistic painting, witnessed another apparition of Comet Halley and inserted it into a nativity scene. The Great Comet of 1466 – yet another return of Halley’s Comet – panicked Christian Europe; the Christians feared that God, who sends comets, might be on the side of the Turks, who had just captured Constantinople.

The leading astronomers of the sixteenth and seventeenth centuries were fascinated by comets, and even Newton became a little giddy over them. Kepler described comets as darting through space ‘as the fishes in the sea,’ but being dissipated by sunlight, as the cometary tail always points away from the sun. David Hume, in many cases an uncompromising rationalist, at least toyed with the notion that comets were the reproductive cells – the eggs or sperm – of planetary systems, that planets are produced by a kind of interstellar sex. As an undergraduate, before his invention of the reflecting telescope, Newton spent many consecutive sleepless nights searching the sky for comets with his naked eye, pursuing them with such fervor that he felt ill from exhaustion. Following Tycho and Kepler, Newton concluded that the comets seen from Earth do not move within our atmosphere, as Aristotle and others had thought, but rather are more distant than the Moon, although closer than Saturn. Comets shine, as the planets do, by reflected sunlight, ‘and they are much mistaken who remove them almost as far as the fixed stars; for if it were so, the comets could receive no more light from our Sun than our planets do from the fixed stars.’ He showed that comets, like planets, move in ellipses: ‘Comets are a sort of planets revolved in very eccentric orbits about the Sun.’ This demystification, this prediction of regular cometary orbits, led his friend Edmund Halley in 1707 to calculate that the comets of 1531, 1607 and 1682 were apparitions at 76-year intervals of the same comet, and predicted its return in 1758. The comet duly arrived and was named for him posthumously. Comet Halley has played an interesting role in human history, and may be the target of the first space vehicle probe of a comet, during its return in 1986.

Modern planetary scientists sometimes argue that the collision of a comet with a planet might make a significant contribution to the planetary atmosphere. For example, all the water in the atmosphere of Mars today could be accounted for by a recent impact of a small comet. Newton noted that the matter in the tails of comets is dissipated in interplanetary space, lost to the comet and little by little attracted gravitationally to nearby planets. He believed that the water on the Earth is gradually being lost, ‘spent upon vegetation and putrefaction, and converted into dry earth . . . The fluids, if they are not supplied from without, must be in a continual decrease, and quite fail at last.’ Newton seems to have believed that the Earth’s oceans are of cometary origin, and that life is possible only because cometary matter falls upon our planet. In a mystical reverie, he went still further: ‘I suspect, moreover, that it is chiefly from the comets that spirit comes, which is indeed the smallest but the most subtle and useful part of our air, and so much required to sustain the life of all things with us.’

As early as 1868 the astronomer William Huggins found an identity between some features in the spectrum of a comet and the spectrum of natural or ‘olefiant’ gas. Huggins had found organic matter in the comets; in subsequent years cyanogen, CN, consisting of a carbon and a nitrogen atom, the molecular fragment that makes cyanides, was identified in the tails of comets. When the Earth was about to pass through the tail of Halley’s Comet in 1910, many people panicked. They overlooked the fact that the tail of a comet is extravagantly diffuse: the actual danger from the poison in a comet’s tail is far less than the danger, even in 1910, from industrial pollution in large cities.

But that reassured almost no one. For example, headlines in the San Francisco Chronicle for May 15, 1910, include ‘Comet Camera as Big as a House,’ ‘Comet Comes and Husband Reforms,’ ‘Comet Parties Now Fad in New York.’ The Los Angeles Examiner adopted a light mood: ‘Say! Has That Comet Cyanogened You Yet? . . . Entire Human Race Due for Free Gaseous Bath,’ ‘Expect “High Jinks,”’ ‘Many Feel Cyanogen Tang,’ ‘Victim Climbs Trees, Tries to Phone Comet.’ In 1910 there were parties, making merry before the world ended of cyanogen pollution. Entrepreneurs hawked anti-comet pills and gas masks, the latter an eerie premonition of the battlefields of World War 1.

Some confusion about comets continues to our own time. In 1957, I was a graduate student at the University of Chicago’s Yerkes Observatory. Alone in the observatory late one night, I heard the telephone ring persistently. When I answered, a voice, betraying a well-advanced state of inebriation, said, ‘Lemme talk to a shtrominer.’ ‘Can I help you?’ ‘Well, see, we’re havin’ this garden party out here in Wilmette, and there’s somethin’ in the sky. The funny part is, though, if you look straight at it, it goes away. But if you don’t look at it, there it is.’ The most sensitive part of the retina is not at the center of the field of view. You can see faint stars and other objects by averting your vision slightly. I knew that, barely visible in the sky at this time, was a newly discovered comet called Arend-Roland. So I told him that he was probably looking at a comet. There was a long pause, followed by the query: ‘Wash’a comet?’ ‘A comet,’ I replied, ‘is a snowball one mile across.’ There was a longer pause, after which the caller requested, ‘Lemme talk to a real shtrominer.’ When Halley’s Comet reappears in 1986, I wonder what political leaders will fear the apparition, what other silliness will then be upon us.

Pages: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Leave a Reply 0

Your email address will not be published. Required fields are marked *