Cosmos by Carl Sagan

For if the firmament be of such an incomparable bigness, as these Copernical giants will have it . . . , so vast and full of innumerable stars, as being infinite in extent . . . why may we not suppose . . . those infinite stars visible in the firmament to be so many suns, with particular fixed centers; to have likewise their subordinate planets, as the sun hath his dancing still around him? . . . And so, in consequence, there are infinite habitable worlds; what hinders? . . . these and suchlike insolent and bold attempts, prodigious paradoxes, inferences must needs follow, if it once be granted which . . . Kepler . . . and others maintain of the Earth’s motion.

But the Earth does move. Merton, if he lived today, would be obliged to deduce ‘infinite, habitable worlds.’ Huygens did not shrink from this conclusion; he embraced it gladly: Across the sea of space the stars are other suns. By analogy with our solar system, Huygens reasoned that those stars should have their own planetary systems and that many of these planets might be inhabited: ‘Should we allow the planets nothing but vast deserts . . . and deprive them of all those creatures that more plainly bespeak their divine architect, we should sink them below the Earth in beauty and dignity, a thing very unreasonable.’*

* A few others had held similar opinions. In his Harmonice Mundi Kepler remarked ‘it was Tycho Brahe’s opinion concerning that bare wilderness of globes that it does not exist fruitlessly but is filled with inhabitants.’

These ideas were set forth in an extraordinary book bearing the triumphant title The Celestial Worlds Discover’d: Conjectures Concerning the Inhabitants, Plants and Productions of the Worlds in the Planets. Composed shortly before Huygens died in 1690, the work was admired by many, including Czar Peter the Great, who made it the first product of Western science to be published in Russia. The book is in large part about the nature or environments of the planets. Among the figures in the finely rendered first edition is one in which we see, to scale, the Sun and the giant planets Jupiter and Saturn. They are, comparatively, rather small. There is also an etching of Saturn next to the Earth: Our planet is a tiny circle.

By and large Huygens imagined the environments and inhabitants of other planets to be rather like those of seventeenth-century Earth. He conceived of ‘planetarians’ whose ‘whole Bodies, and every part of them, may be quite distinct and different from ours . . . ‘tis a very ridiculous opinion . . . that it is impossible a rational Soul should dwell in any other shape than ours.’ You could be smart, he was saying, even if you looked peculiar. But he then went on to argue that they would not look very peculiar – that they must have hands and feet and walk upright, that they would have writing and geometry, and that Jupiter has its four Galilean satellites to provide a navigational aid for the sailors in the Jovian oceans. Huygens was, of course, a citizen of his time. Who of us is not? He claimed science as his religion and then argued that the planets must be inhabited because otherwise God had made worlds for nothing. Because he lived before Darwin, his speculations about extraterrestrial life are innocent of the evolutionary perspective. But he was able to develop on observational grounds something akin to the modern cosmic perspective:

What a wonderful and Amazing scheme have we here of the magnificent vastness of the universe . . . So many Suns, so many Earths . . . and every one of them stock’d with so many Herbs, Trees, and Animals, adorn’d with so many Seas and Mountains! . . . And how must our Wonder and Admiration be increased when we consider the prodigious Distance and Multitude of the Stars.

The Voyager spacecraft are the lineal descendants of those sailing-ship voyages of exploration, and of the scientific and speculative tradition of Christiaan Huygens. The Voyagers are caravels bound for the stars, and on the way exploring those worlds that Huygens knew and loved so well.

One of the main commodities returned on those voyages of centuries ago were travelers’ tales,* stories of alien lands and exotic creatures that evoked our sense of wonder and stimulated future exploration. There had been accounts of mountains that reached the sky; of dragons and sea monsters; of everyday eating utensils made of gold; of a beast with an arm for a nose; of people who thought the doctrinal disputes among Protestants, Catholics, Jews and Muslims to be silly; of a black stone that burned; of headless humans with mouths in their chests; of sheep that grew on trees. Some of these stories were true; some were lies. Others had a kernel of truth, misunderstood or exaggerated by the explorers or their informants. In the hands of Voltaire, say, or Jonathan Swift, these accounts stimulated a new perspective on European society, forcing a reconsideration of that insular world.

* Such tales are an ancient human tradition; many of them have had, from the beginning of exploration, a cosmic motif. For example, the fifteenth-century explorations of Indonesia, Sri Lanka, India, Arabia and Africa by the Ming Dynasty Chinese were described by Fei Hsin, one of the participants, in a picture book prepared for the Emperor, as ‘The Triumphant Visions of the Starry Raft.’ Unfortunately, the pictures – although not the text – have been lost.

Modern Voyagers also return travelers’ tales, tales of a world shattered like a crystal sphere; a globe where the ground is covered, pole to pole, with what looks like a network of cobwebs; tiny moons shaped like potatoes; a world with an underground ocean; a land that smells of rotten eggs and looks like a pizza pie, with lakes of molten sulfur and volcanic eruptions ejecting smoke directly into space; a planet called Jupiter that dwarfs our own – so large that 1,000 Earths would fit within it.

The Galilean satellites of Jupiter are each almost as big as the planet Mercury. We can measure their sizes and masses and so calculate their density, which tells us something about the composition of their interiors. We find that the inner two, lo and Europa, have a density as high as rock. The outer two, Ganymede and Callisto, have a much lower density, halfway between rock and ice. But the mixture of ice and rocks within these outer moons must contain, as do rocks on Earth, traces of radioactive minerals, which heat their surroundings. There is no effective way for this heat, accumulated over billions of years, to reach the surface and be lost to space, and the radioactivity inside Ganymede and Callisto must therefore melt their icy interiors. We anticipate underground oceans of slush and water in these moons, a hint, before we have ever seen the surfaces of the Galilean satellites close up, that they may be very different one from another. When we do look closely, through the eyes of Voyager, this prediction is confirmed. They do not resemble each other. They are different from any worlds we have ever seen before.

The Voyager 2 spacecraft will never return to Earth. But its scientific findings, its epic discoveries, its travelers’ tales, do return. Take July 9, 1979, for instance. At 8:04 Pacific Standard Time on this morning, the first pictures of a new world, called Europa after an old one, were received on Earth.

How does a picture from the outer solar system get to us? Sunlight shines on Europa in its orbit around Jupiter and is reflected back to space, where some of it strikes the phosphors of the Voyager television cameras, generating an image. The image is read by the Voyager computers, radioed back across the immense intervening distance of half a billion kilometers to a radio telescope, a ground station on the Earth. There is one in Spain, one in the Mojave Desert of Southern California and one in Australia. (On that July morning in 1979 it was the one in Australia that was pointed toward Jupiter and Europa.) It then passes the information via a communications satellite in Earth orbit to Southern California, where it is transmitted by a set of microwave relay towers to a computer at the Jet Propulsion Laboratory, where it is processed. The picture is fundamentally like a newspaper wirephoto, made of perhaps a million individual dots, each a different shade of gray, so fine and close together that at a distance the constituent dots are invisible. We see only their cumulative effect. The information from the spacecraft specifies how bright or dark each dot is to be. After processing, the dots are then stored on a magnetic disc, something like a phonograph record. There are some eighteen thousand photographs taken in the Jupiter system by Voyager 1 that are stored on such magnetic discs, and an equivalent number for Voyager 2. Finally, the end product of this remarkable set of links and relays is a thin piece of glossy paper, in this case showing the wonders of Europa, recorded, processed and examined for the first time in human history on July 9, 1979.

Pages: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Leave a Reply 0

Your email address will not be published. Required fields are marked *