Cosmos by Carl Sagan

The volcanoes of Io were predicted, before they were discovered, by Stanton Peale and his co-workers, who calculated the tides that would be raised in the solid interior of Io by the combined pulls of the nearby moon Europa and the giant planet Jupiter. They found that the rocks inside Io should have been melted, not by radioactivity but by tides; that much of the interior of Io should be liquid. It now seems likely that the volcanoes of Io are tapping an underground ocean of liquid sulfur, melted and concentrated near the surface. When solid sulfur is heated a little past the normal boiling point of water, to about 115°C, it melts and changes color. The higher the temperature, the deeper the color. If the molten sulfur is quickly cooled, it retains its color. The pattern of colors that we see on Io resembles closely what we would expect if rivers and torrents and sheets of molten sulfur were pouring out of the mouths of the volcanoes: black sulfur, the hottest, near the top of the volcano; red and orange, including the rivers, nearby; and great plains covered by yellow sulfur at a greater remove. The surface of Io is changing on a time scale of months. Maps will have to be issued regularly, like weather reports on Earth. Those future explorers on Io will have to keep their wits about them.

The very thin and tenuous atmosphere of Io was found by Voyager to be composed mainly of sulfur dioxide. But this thin atmosphere can serve a useful purpose, because it may be just thick enough to protect the surface from the intense charged particles in the Jupiter radiation belt in which Io is embedded. At night the temperature drops so low that the sulfur dioxide should condense out as a kind of white frost; the charged particles would then immolate the surface, and it would probably be wise to spend the nights just slightly underground.

The great volcanic plumes of Io reach so high that they are close to injecting their atoms directly into the space around Jupiter. The volcanoes are the probable source of the great doughnut-shaped ring of atoms that surrounds Jupiter in the position of Io’s orbit. These atoms, gradually spiraling in toward Jupiter, should coat the inner moon Amalthea and may be responsible for its reddish coloration. It is even possible that the material outgassed from Io contributes, after many collisions and condensations, to the ring system of Jupiter.

A substantial human presence on Jupiter itself is much more difficult to imagine – although I suppose great balloon cities permanently floating in its atmosphere are a technological possibility for the remote future. As seen from the near sides of Io or Europa, that immense and variable world fills much of the sky, hanging aloft, never to rise or set, because almost every satellite in the solar system keeps a constant face to its planet, as the Moon does to the Earth. Jupiter will be a source of continuing provocation and excitement for the future human explorers of the Jovian moons.

As the solar system condensed out of interstellar gas and dust, Jupiter acquired most of the matter that was not ejected into interstellar space and did not fall inward to form the Sun. Had Jupiter been several dozen times more massive, the matter in its interior would have undergone thermonuclear reactions, and Jupiter would have begun to shine by its own light. The largest planet is a star that failed. Even so, its interior temperatures are sufficiently high that it gives off about twice as much energy as it receives from the Sun. In the infrared part of the spectrum, it might even be correct to consider Jupiter a star. Had it become a star in visible light, we would today inhabit a binary or double-star system, with two suns in our sky, and the nights would come more rarely – a commonplace, I believe, in countless solar systems throughout the Milky Way Galaxy. We would doubtless think the circumstances natural and lovely.

Deep below the clouds of Jupiter the weight of the overlying layers of atmosphere produces pressures much higher than any found on Earth, pressures so great that electrons are squeezed off hydrogen atoms, producing a remarkable substance, liquid metallic hydrogen – a physical state that has never been observed in terrestrial laboratories, because the requisite pressures have never been achieved on Earth. (There is some hope that metallic hydrogen is a superconductor at moderate temperatures. If it could be manufactured on Earth, it would work a revolution in electronics.) In the interior of Jupiter, where the pressures are about three million times the atmospheric pressure at the surface of the Earth, there is almost nothing but a great dark sloshing ocean of metallic hydrogen. But at the very core of Jupiter there may be a lump of rock and iron, an Earth-like world in a pressure vise, hidden forever at the center of the largest planet.

The electrical currents in the liquid metal interior of Jupiter may be the source of the planet’s enormous magnetic field, the largest in the solar system, and of its associated belt of trapped electrons and protons. These charged particles are ejected from the Sun in the solar wind and captured and accelerated by Jupiter’s magnetic field. Vast numbers of them are trapped far above the clouds and are condemned to bounce from pole to pole until by chance they encounter some high-altitude atmospheric molecule and are removed from the radiation belt. Io moves in an orbit so close to Jupiter that it plows through the midst of this intense radiation, creating cascades of charged particles, which in turn generate violent bursts of radio energy. (They may also influence eruptive processes on the surface of Io.) It is possible to predict radio bursts from Jupiter with better reliability than weather forecasts on Earth, by computing the position of Io.

That Jupiter is a source of radio emission was discovered accidentally in the 1950’s, the early days of radio astronomy. Two young Americans, Bernard Burke and Kenneth Franklin, were examining the sky with a newly constructed and for that time very sensitive radio telescope. They were searching the cosmic radio background – that is, radio sources far beyond our solar system. To their surprise, they found an intense and previously unreported source that seemed to correspond to no prominent star, nebula or galaxy. What is more, it gradually moved, with respect to the distant stars, much faster than any remote object could.* After finding no likely explanation of all this in their charts of the distant Cosmos, they one day stepped outside the observatory and looked up at the sky with the naked eye to see if anything interesting happened to be there. Bemusedly they noted an exceptionally bright object in the right place, which they soon identified as the planet Jupiter. This accidental discovery is, incidentally, entirely typical of the history of science.

* Because the speed of light is finite (see Chapter 8).

Every evening before Voyager 1’s encounter with Jupiter, I could see that giant planet twinkling in the sky, a sight our ancestors have enjoyed and wondered at for a million years. And on the evening of Encounter, on my way to study the Voyager data arriving at JPL, I thought that Jupiter would never be the same, never again just a point of light in the night sky, but would forever after be a place to be explored and known. Jupiter and its moons are a kind of miniature solar system of diverse and exquisite worlds with much to teach us.

In composition and in many other respects Saturn is similar to Jupiter, although smaller. Rotating once every ten hours, it exhibits colorful equatorial banding, which is, however, not so prominent as Jupiter’s. It has a weaker magnetic field and radiation belt than Jupiter and a more spectacular set of circumplanetary rings. And it also is surrounded by a dozen or more satellites.

The most interesting of the moons of Saturn seems to be Titan, the largest moon in the solar system and the only one with a substantial atmosphere. Prior to the encounter of Voyager 1 with Titan in November 1980, our information about Titan was scanty and tantalizing. The only gas known unambiguously to be present was methane, CH4, discovered by G. P. Kuiper. Ultraviolet light from the sun converts methane to more complex hydrocarbon molecules and hydrogen gas. The hydrocarbons should remain on Titan, covering the surface with a brownish tarry organic sludge, something like that produced in experiments on the origin of life on Earth. The lightweight hydrogen gas should, because of Titan’s low gravity, rapidly escape to space by a violent process known as ‘blowoff,’ which should carry the methane and other atmospheric constituents with it. But Titan has an atmospheric pressure at least as great as that of the planet Mars. Blowoff does not seem to be happening. Perhaps there is some major and as yet undiscovered atmospheric constituent – nitrogen, for example – which keeps the average molecular weight of the atmosphere high and prevents blowoff. Or perhaps blowoff is happening, but the gases lost to space are being replenished by others released from the satellite’s interior. The bulk density of Titan is so low that there must be a vast supply of water and other ices, probably including methane, which are at unknown rates being released to the surface by internal heating.

Pages: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Leave a Reply 0

Your email address will not be published. Required fields are marked *