Cosmos by Carl Sagan

Because the design of space missions is finalized many years before launch, and because of Vishniac’s death, the results of his Antarctic experiments did not influence the Viking design for seeking Martian life. In general, the microbiology experiments were not carried out at the low ambient Martian temperatures, and most did not provide long incubation times. They all made fairly strong assumptions about what Martian metabolism had to be like. There was no way to look for life inside the rocks.

Each Viking lander was equipped with a sample arm to acquire material from the surface and then slowly withdraw it into the innards of the spacecraft, transporting the particles on little hoppers like an electric train to five different experiments: one on the inorganic chemistry of the soil, another to look for organic molecules in the sand and dust, and three to look for microbial life. When we look for life on a planet, we are making certain assumptions. We try, as well as we can, not to assume that life elsewhere will be just like life here. But there are limits to what we can do. We know in detail only about life here. While the Viking biology experiments are a pioneering first effort, they hardly represent a definitive search for life on Mars. The results have been tantalizing, annoying, provocative, stimulating, and, at least until recently, substantially inconclusive.

Each of the three microbiology experiments asked a different kind of question, but in all cases a question about Martian metabolism. If there are microorganisms in the Martian soil, they must take in food and give off waste gases; or they must take in gases from the atmosphere and, perhaps with the aid of sunlight, convert them into useful materials. So we bring food to Mars and hope that the Martians, if there are any, will find it tasty. Then we see if any interesting new gases come out of the soil. Or we provide our own radioactively labeled gases and see if they are converted into organic matter, in which case small Martians are inferred.

By criteria established before launch, two of the three Viking microbiology experiments seem to have yielded positive results. First, when Martian soil was mixed with a sterile organic soup from Earth, something in the soil chemically broke down the soup – almost as if there were respiring microbes metabolizing a food package from Earth. Second, when gases from Earth were introduced into the Martian soil sample, the gases became chemically combined with the soil – almost as if there were photosynthesizing microbes, generating organic matter from atmospheric gases. Positive results in Martian microbiology were achieved in seven different samplings- in two locales on Mars separated by 5,000 kilometers.

But the situation is complex, and the criteria of experimental success may have been inadequate. Enormous efforts were made to build the Viking microbiology experiments and test them with a variety of microbes. Very little effort was made to calibrate the experiments with plausible inorganic Martian surface materials. Mars is not the Earth. As the legacy of Percival Lowell reminds us, we can be fooled. Perhaps there is an exotic inorganic chemistry in the Martian soil that is able by itself, in the absence of Martian microbes, to oxidize foodstuffs. Perhaps there is some special inorganic, nonliving catalyst in the soil that is able to fix atmospheric gases and convert them into organic molecules.

Recent experiments suggest that this may indeed be the case. In the great Martian dust storm of 1971, spectral features of the dust were obtained by the Mariner 9 infrared spectrometer. In analyzing these spectra, O. B. Toon, J. B. Pollack and I found that certain features seem best accounted for by montmorillonite and other kinds of clay. Subsequent observations by the Viking lander support the identification of windblown clays on Mars. Now, A. Banin and J. Rishpon have found that they can reproduce some of the key features – those resembling photosynthesis as well as those resembling respiration of the ‘successful’ Viking microbiology experiments if in laboratory experiments they substitute such clays for the Martian soil. The clays have a complex active surface, given to absorbing and releasing gases and to catalyzing chemical reactions. It is too soon to say that all the Viking microbiology results can be explained by inorganic chemistry, but such a result would no longer be surprising. The clay hypothesis hardly excludes life on Mars, but it certainly carries us far enough to say that there is no compelling evidence for microbiology on Mars.

Even so, the results of Banin and Rishpon are of great biological importance because they show that in the absence of life there can be a kind of soil chemistry that does some of the same things life does. On the Earth before life, there may already have been chemical processes resembling respiration and photosynthesis cycling in the soil, perhaps to be incorporated by life once it arose. In addition, we know that montmorillonite clays are a potent catalyst for combining amino acids into longer chain molecules resembling proteins. The clays of the primitive Earth may have been the forge of life, and the chemistry of contemporary Mars may provide essential clues to the origin and early history of life on our planet.

The Martian surface exhibits many impact craters, each named after a person, usually a scientist. Crater Vishniac lies appropriately in the Antarctic region of Mars. Vishniac did not claim that there had to be life on Mars, merely that it was possible, and that it was extraordinarily important to know if it was there. If life on Mars exists, we will have a unique opportunity to test the generality of our form of fife. And if there is no life on Mars, a planet rather like the Earth, we must understand why – because in that case, as Vishniac stressed, we have the classic scientific confrontation of the experiment and the control.

The finding that the Viking microbiology results can be explained by clays, that they need not imply life, helps to resolve another mystery: the Viking organic chemistry experiment showed not a hint of organic matter in the Martian soil. If there is life on Mars, where are the dead bodies? No organic molecules could be found – no building blocks of proteins and nucleic acids, no simple hydrocarbons, nothing of the stuff of life on Earth. This is not necessarily a contradiction, because the Viking microbiology experiments are a thousand times more sensitive (per equivalent carbon atom) than the Viking chemistry experiments, and seem to detect organic matter synthesized in the Martian soil. But this does not leave much margin. Terrestrial soil is loaded with the organic remains of once-living organisms; Martian soil has less organic matter than the surface of the Moon. If we held to the life hypothesis, we might suppose that the dead bodies have been destroyed by the chemically reactive, oxidizing surface of Mars – like a germ in a bottle of hydrogen peroxide; or that there is life, but of a kind in which organic chemistry plays a less central role than it does in life on Earth.

But this last alternative seems to me to be special pleading: I am, reluctantly, a self-confessed carbon chauvinist. Carbon is abundant in the Cosmos. It makes marvelously complex molecules, good for life. I am also a water chauvinist. Water makes an ideal solvent system for organic chemistry to work in and stays liquid over a wide range of temperatures. But sometimes I wonder. Could my fondness for these materials have something to do with the fact that I am made chiefly of them? Are we carbon- and water-based because those materials were abundant on the Earth at the time of the origin of life? Could life elsewhere – on Mars, say – be built of different stuff?

I am a collection of water, calcium and organic molecules called Carl Sagan. You are a collection of almost identical molecules with a different collective label. But is that all? Is there nothing in here but molecules? Some people find this idea somehow demeaning to human dignity. For myself, I find it elevating that our universe permits the evolution of molecular machines as intricate and subtle as we.

But the essence of life is not so much the atoms and simple molecules that make us up as the way in which they are put together. Every now and then we read that the chemicals which constitute the human body cost ninety-seven cents or ten dollars or some such figure; it is a little depressing to find our bodies valued so little. However, these estimates are for human beings reduced to our simplest possible components. We are made mostly of water, which costs almost nothing; the carbon is costed in the form of coal; the calcium in our bones as chalk; the nitrogen in our proteins as air (cheap also); the iron in our blood as rusty nails. If we did not know better, we might be tempted to take all the atoms that make us up, mix them together in a big container and stir. We can do this as much as we want. But in the end all we have is a tedious mixture of atoms. How could we have expected anything else?

Pages: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Leave a Reply 0

Your email address will not be published. Required fields are marked *