Cosmos by Carl Sagan

For most of the four billion years since the origin of life, the dominant organisms were microscopic blue-green algae, which covered and filled the oceans. Then some 600 million years ago, the monopolizing grip of the algae was broken and an enormous proliferation of new lifeforms emerged, an event called the Cambrian explosion. Life had arisen almost immediately after the origin of the Earth, which suggests that life may be an inevitable chemical process on an Earth-like planet. But life did not evolve much beyond blue-green algae for three billion years, which suggests that large lifeforms with specialized organs are hard to evolve, harder even than the origin of life. Perhaps there are many other planets that today have abundant microbes but no big beasts and vegetables.

Soon after the Cambrian explosion, the oceans teemed with many different forms of life. By 500 million years ago there were vast herds of trilobites, beautifully constructed animals, a little like large insects; some hunted in packs on the ocean floor. They stored crystals in their eyes to detect polarized light. But there are no trilobites alive today; there have been none for 200 million years. The Earth used to be inhabited by plants and animals of which there is today no living trace. And of course every species now on the planet once did not exist. There is no hint in the old rocks of animals like us. Species appear, abide more or less briefly and then flicker out.

Before the Cambrian explosion species seem to have succeeded one another rather slowly. In part this may be because the richness of our information declines rapidly the farther into the past we peer; in the early history of our planet, few organisms had hard parts and soft beings leave few fossil remains. But in part the sluggish rate of appearance of dramatically new forms before the Cambrian explosion is real; the painstaking evolution of cell structure and biochemistry is not immediately reflected in the external forms revealed by the fossil record. After the Cambrian explosion, exquisite new adaptations followed one another with comparatively breathtaking speed. In rapid succession, the first fish and the first vertebrates appeared; plants, previously restricted to the oceans, began the colonization of the land; the first insect evolved, and its descendants became the pioneers in the colonization of the land by animals; winged insects arose together with the amphibians, creatures something like the lungfish, able to survive both on land and in the water; the first trees and the first reptiles appeared; the dinosaurs evolved; the mammals emerged, and then the first birds; the first flowers appeared; the dinosaurs became extinct; the earliest cetaceans, ancestors to the dolphins and whales, arose and in the same period the primates – the ancestors of the monkeys, the apes and the humans. Less than ten million years ago, the first creatures who closely resembled human beings evolved, accompanied by a spectacular increase in brain size. And then, only a few million years ago, the first true humans emerged.

Human beings grew up in forests; we have a natural affinity for them. How lovely a tree is, straining toward the sky. Its leaves harvest sunlight to photosynthesize, so trees compete by shadowing their neighbors. If you look closely you can often see two trees pushing and shoving with languid grace. Trees are great and beautiful machines, powered by sunlight, taking in water from the ground and carbon dioxide from the air, converting these materials into food for their use and ours. The plant uses the carbohydrates it makes as an energy source to go about its planty business. And we animals, who are ultimately parasites on the plants, steal the carbohydrates so we can go about our business. In eating the plants we combine the carbohydrates with oxygen dissolved in our blood because of our penchant for breathing air, and so extract the energy that makes us go. In the process we exhale carbon dioxide, which the plants then recycle to make more carbohydrates. What a marvelous cooperative arrangement – plants and animals each inhaling the other’s exhalations, a kind of planet-wide mutual mouth-to-stoma resuscitation, the entire elegant cycle powered by a star 150 million kilometers away.

There are tens of billions of known kinds of organic molecules. Yet only about fifty of them are used for the essential activities of life. The same patterns are employed over and over again, conservatively, ingeniously for different functions. And at the very heart of life on Earth the proteins that control cell chemistry, and the nucleic acids that carry the hereditary instructions – we find these molecules to be essentially identical in all the plants and animals. An oak tree and I are made of the same stuff. If you go far enough back, we have a common ancestor.

The living cell is a regime as complex and beautiful as the realm of the galaxies and the stars. The elaborate machinery of the cell has been painstakingly evolved over four billion years. Fragments of food are transmogrified into cellular machinery. Today’s white blood cell is yesterday’s creamed spinach. How does the cell do it? Inside is a labyrinthine and subtle architecture that maintains its own structure, transforms molecules, stores energy and prepares for self-replication. If we could enter a cell, many of the molecular specks we would see would be protein molecules, some in frenzied activity, others merely waiting. The most important proteins are enzymes, molecules that control the cell’s chemical reactions. Enzymes are like assembly-line workers, each specializing in a particular molecular job: Step 4 in the construction of the nucleotide guanosine phosphate, say, or Step 11 in the dismantling of a molecule of sugar to extract energy, the currency that pays for getting the other cellular jobs done. But the enzymes do not run the show. They receive their instructions – and are in fact themselves constructed – on orders sent from those in charge. The boss molecules are the nucleic acids. They live sequestered in a forbidden city in the deep interior, in the nucleus of the cell.

If we plunged through a pore into the nucleus of the cell, we would find something that resembles an explosion in a spaghetti factory – a disorderly multitude of coils and strands, which are the two kinds of nucleic acids: DNA, which knows what to do, and RNA, which conveys the instructions issued by DNA to the rest of the cell. These are the best that four billion years of evolution could produce, containing the full complement of information on how to make a cell, a tree or a human work. The amount of information in human DNA, if written out in ordinary language, would occupy a hundred thick volumes. What is more, the DNA molecules know how to make, with only very rare exceptions, identical copies of themselves. They know extraordinarily much.

DNA is a double helix, the two intertwined strands resembling a ‘spiral’ staircase. It is the sequence or ordering of the nucleotides along either of the constituent strands that is the language of life. During reproduction, the helices separate, assisted by a special unwinding protein, each synthesizing an identical copy of the other from nucleotide building blocks floating about nearby in the viscous liquid of the cell nucleus. Once the unwinding is underway, a remarkable enzyme called DNA polymerase helps ensure that the copying works almost perfectly. If a mistake is made, there are enzymes which snip the mistake out and replace the wrong nucleotide by the right one. These enzymes are a molecular machine with awesome powers.

In addition to making accurate copies of itself – which is what heredity is about – nuclear DNA directs the activities of the cell – which is what metabolism is about – by synthesizing another nucleic acid called messenger RNA, each of which passes to the extranuclear provinces and there controls the construction, at the right time, in the right place, of one enzyme. When all is done, a single enzyme molecule has been produced, which then goes about ordering one particular aspect of the chemistry of the cell.

Human DNA is a ladder a billion nucleotides long. Most possible combinations of nucleotides are nonsense: they would cause the synthesis of proteins that perform no useful function. Only an extremely limited number of nucleic acid molecules are any good for lifeforms as complicated as we. Even so, the number of useful ways of putting nucleic acids together is stupefyingly large – probably far greater than the total number of electrons and protons in the universe. Accordingly, the number of possible individual human beings is vastly greater than the number that have ever lived: the untapped potential of the human species is immense. There must be ways of putting nucleic acids together that will function far better – by any criterion we choose – than any human being who has ever lived. Fortunately, we do not yet know how to assemble alternative sequences of nucleotides to make alternative kinds of human beings. In the future we may well be able to assemble nucleotides in any desired sequence, to produce whatever characteristics we think desirable – a sobering and disquieting prospect.

Pages: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Leave a Reply 0

Your email address will not be published. Required fields are marked *